Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Geochem Health ; 46(4): 118, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38478162

RESUMO

Can nano-zero-valent iron, synthesized using oak leaf extract, be the key solution for water preservation, efficiently removing heavy metal ions and phosphate anions simultaneously? This research unveils how this technology not only promises high efficiency in the remediation of water resources, but also sets new standards for environmentally friendly processes. The high antioxidant capacity and high phenol content indicate suggest the possibility of oak-nZVI synthesis using oak leaf extract as a stable material with minimal agglomeration. The simultaneous removal of Cd and phosphates, as well as and Ni and phosphates was optimized by a statistically designed experiment with a definitive screening design approach. By defining the key factors with the most significant impact, a more efficient and faster method is achieved, improving the economic sustainability of the research by minimizing the number of experiments while maximizing precision. In terms of significance, four input parameters affecting process productivity were monitored: initial metal concentration (1-9 mg L-1), initial ion concentration (1-9 mg L-1), pH value (2-10), and oak-nZVI dosage (2-16 mL). The process optimization resulted in the highest simultaneous removal efficiency of 98.99 and 87.30% for cadmium and phosphate ions, respectively. The highest efficiency for the simultaneous removal of nickel and phosphate ions was 93.44 and 96.75%, respectively. The optimization process fits within the confidence intervals, which confirms the assumption that the selected regression model well describes the process. In the context of e of the challenges and problems of environmental protection, this work has shown considerable potential and successful application for the simultaneous removal of Cd(II) and Ni(II) in the presence of phosphates from water.


Assuntos
Metais Pesados , Nanopartículas , Poluentes Químicos da Água , Cádmio , Água , Fosfatos , Poluentes Químicos da Água/química , Metais Pesados/química , Nanopartículas/química , Íons , Extratos Vegetais , Adsorção
2.
Chemosphere ; 355: 141701, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38508463

RESUMO

The purpose of this study is investigation of electrocoagulation (EC) as a treatment of municipal wastewater, integrating life cycle impact assessment (LCIA) for assessing its environmental performance of investigated treatment. The study evaluated the effectiveness of EC in removing physico-chemical and microbial parameters using aluminum (Al) and iron (Fe) electrodes in monopolar and bipolar modes. Bipolar arrangement of Al(-)/Al/Al/Al(+) electrodes achieved the highest removals: 70% COD, 72% BOD5 followed by complete elimination of total phosphorous, turbidity and microbial parameters. This treatment was subject to investigation of the influence of reaction time (t = 10-60 min) on removals at higher current density (CD = 3.33 mA/cm2). In order to reduce energy consumption, the same reaction time range was used with a reduced CD = 2.33 mA/cm2. Following removal efficiencies obtained: 47-72% COD (higher CD) and 53-78% (lower CD); 69-75% BOD5 (higher CD) and 55-74% CD (lower CD); 12-21% NH4- (higher CD) and 7-22% NH4- (lower CD). Total P, NO3- and NO2- compounds showed the same removals regardless the CD. Decrease in current density did not influence removals of total suspended matter, turbidity, salinity as well as microbial parameters. The bipolar arrangement of Al(-)/Al/Al/Al(+) electrodes, assuming a lower CD = 2.33 mA/cm2 and t = 30 min, was assessed with the Recipe 2016Midpoint (H) and USEtox v.2 LCIA methods to explore the environmental justification of using EC for wastewater treatment. The LCIA results revealed that the EC process significantly reduces water eutrophication and toxicity for freshwater and marine ecosystems, but has higher impacts in global warming, fossil fuel consumption, human toxicity, acidification, and terrestrial ecotoxicity due to high energy consumption. This can be mainly explained by the assumption in the study that the EC precipitate is dispersed to agricultural soil without any pre-treatment and material recovery, along with relatively high energy consumption during the process.


Assuntos
Eliminação de Resíduos Líquidos , Águas Residuárias , Humanos , Eliminação de Resíduos Líquidos/métodos , Ecossistema , Eletrocoagulação/métodos , Ferro , Eletrodos , Alumínio , Resíduos Industriais/análise
3.
Environ Geochem Health ; 45(8): 5943-5960, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37198355

RESUMO

In recent years, more focus has been placed on integrated metal removal processes. Electrokinetic (EK) treatment is superior to other technologies because it can be applied to a variety of mediums. Green nanoparticles, on the other hand, have the potential to significantly reduce pollutant concentrations in a short period of time. In this study, we investigated the possibility of combining green zero-valent iron (nZVI) with EK on Cd and Zn-contaminated sediment. For green synthesis, extracts of dry leaves of mulberry (ML-nZVI) and oak (OL-nZVI) were used, both abundantly present in the Republic of Serbia. The results show that, despite the fact that their availability was greatly reduced, the metals were concentrated and stabilized to a significant extent in the middle of the EK cell (z/L 0.5) after all treatments. When the results were compared, OL-nZVI proved to be a more effective nanomaterial even with smaller doses of OL-nZVI, which is important in terms of achieving better economic benefits. This study identified green nano zero-valent iron as a powerful tool for metal removal when combined with electrokinetic (EK) treatment, which improves green nZVI longevity and migration. This study of the combined green nZVI-EK remediation treatment, in particular, will have an impact on future research in this field, given the achieved efficiency.


Assuntos
Poluentes Ambientais , Recuperação e Remediação Ambiental , Nanopartículas , Poluentes Químicos da Água , Ferro , Folhas de Planta/química , Poluentes Químicos da Água/análise
4.
Molecules ; 28(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36771092

RESUMO

In the framework of wastewater treatment plants, sewage sludge can be directed to biochar production, which when coupled with an external iron source has the potential to be used as a carbon-iron composite material for treating various organic pollutants in advanced oxidation processes. In this research, "green" synthesized nano zero-valent iron (nZVI) supported on sewage sludge-based biochar (BC)-nZVI-BC was used in the Fenton process for the degradation of the recalcitrant organic molecule. In this way, the circular economy principles were supported within wastewater treatment with immediate loop closing; unlike previous papers, where only the water treatment was assessed, the authors proposed a new approach to wastewater treatment, combining solutions for both water and sludge. The following phases were implemented: synthesis and characterization of nano zero-valent iron supported on sewage sludge-based biochar (nZVI-BC); optimization of organic pollutant removal (Reactive Blue 4 as the model pollutant) by nZVI-BC in the Fenton process, using a Definitive Screening Design (DSD) model; reuse of the obtained Fenton sludge, as an additional catalytic material, under previously optimized conditions; and assessment of the exhausted Fenton sludge's ability to be used as a source of nutrients. nZVI-BC was used in the Fenton treatment for the degradation of Reactive Blue 4-a model substance containing a complex and stable anthraquinone structure. The DSD model proposes a high dye-removal efficiency of 95.02% under the following optimal conditions: [RB4] = 50 mg/L, [nZVI] = 200 mg/L, [H2O2] = 10 mM. pH correction was not performed (pH = 3.2). Afterwards, the remaining Fenton sludge, which was thermally treated (named FStreated), was applied as a heterogeneous catalyst under the same optimal conditions with a near-complete organic molecule degradation (99.56% ± 0.15). It could be clearly noticed that the cumulative amount of released nutrients significantly increased with the number of leaching experiments. The highest cumulative amounts of released K, Ca, Mg, Na, and P were therefore observed at the fifth leaching cycle (6.40, 1.66, 1.12, 0.62, 0.48 and 58.2 mg/g, respectively). According to the nutrient release and toxic metal content, FStreated proved to be viable for agricultural applications; these findings illustrated that the "green" synthesis of nZVI-BC not only provides innovative and efficient Fenton catalysts, but also constitutes a novel approach for the utilization of sewage sludge, supporting overall process sustainability.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Purificação da Água , Ferro/química , Esgotos , Peróxido de Hidrogênio , Poluentes Químicos da Água/química , Carvão Vegetal
5.
Environ Technol ; 43(8): 1163-1169, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32907502

RESUMO

Combination of 'green' coagulation and powdered activated carbon adsorption was tested for removal of benzophenone (BP), benzophenone-3 (BP-3) and caffeine (CF) from treated municipal wastewater at realistic concentration levels (1-2 µg/L). At the same time it was tracked how the process affected effluent organic matter (EfOM) by measuring chemical oxygen demand (COD). Green coagulant was produced from dry common bean seed in laboratory. Combined coagulation-adsorption experiments were performed by applying different dosing sequences of process materials. Removal of hydrophobic BP and BP-3 by separate adsorption (from 79 to 98%) was not significantly hindered by the addition of the coagulant (activated carbon dose of 5 or 20 mg/L). However, in some cases negative effects were observed for hydrophilic caffeine, depending on the carbon dose, dosing sequence and presence of total suspended solids (TSS). Thus, when coagulant was firstly added into water without TSS before low activated carbon dose of 5 mg/L, caffeine removal dropped from 26% to 5%. Conversely, when TSS were present in the water sample, the removal of caffeine was not hindered under the same PAC dose and dosing sequence. The importance of the process optimisation related to removal of organic micropollutans of different hydrophilicity has been shown in this paper. Removal of around 30% of COD regardless of the dosing sequence was achieved.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Carvão Vegetal/química , Eliminação de Resíduos Líquidos , Águas Residuárias/química , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...